City of Riverside

WASTEWATER COLLECTION AND TREATMENT FACILITIES INTEGRATED MASTER PLAN

VOLUME 4: WASTEWATER TREATMENT SYSTEM CHAPTER 5: PRELIMINARY TREATMENT

> FINAL February 2008

10540 TALBERT AVENUE, SUITE 200 EAST • FOUNTAIN VALLEY, CALIFORNIA 92708 • (714) 593-5100 • FAX (714) 593-5101 H:\Client\Riversid_SAOW\7472A00\Rpt\Volume 04\Ch05.doc

City of Riverside

WASTEWATER COLLECTION AND TREATMENT FACILITIES INTEGRATED MASTER PLAN

VOLUME 4: WASTEWATER TREATMENT SYSTEM CHAPTER 5: PRELIMINARY TREATMENT

TABLE OF CONTENTS

Page No.

5.1	Purpose	5-1
5.2	Conclusions and Recommendations	5-1
5.3	Background	5-1
5.4	Conceptual Layout	5-2
5.5	Bar Screens	5-4
5.6	Screening Conveyors	5-8
5.7	Screenings Washer/Compactor5	5-11
5.8	Grit Basins	5-11

LIST OF TABLES

Table 5.1	Existing Headworks Facility	5-2
Table 5.2	Total Cost Estimate of New Headworks Facility	
Table 5.3	Summary of Climber- and Chain-and-Rake-Type Bar Screen	
	Advantages/Disadvantages	5-7
Table 5.4	Comparison of Bar Screens	5-7
Table 5.5	Summary of Belt and Shaftless Screw Conveyor	
	Advantages/Disadvantages	5-8
Table 5.6	Comparison of Belt Conveyor and Shaftless Screw Conveyor	5-8
Table 5.7	Life Cycle Cost Analysis of Conveyors	5-11
Table 5.8	Comparison of Flat- and Sloped-Bottom Vortex Grit Basins	5-12

LIST OF FIGURES

Figure 5.1	New Headworks Layout	5-3
Figure 5.2	Headworks [®] Mahr [™] Bar Screen	5-5
Figure 5.3	Duperon [®] FlexRake	5-6
Figure 5.4	Typical Belt Conveyor for Screenings	5-9
Figure 5.5	Typical Shaftless Screw Conveyor for Screenings	5-10
Figure 5.6	Shaftless Screw Screenings Compactor with Washing System	5-13
Figure 5.7	Flat-Bottom Vortex Grit Basin Typical Section	5-14
Figure 5.8	Sloped-Bottom Vortex Grit Basin Typical Section	5-15

PRELIMINARY TREATMENT

5.1 PURPOSE

The purpose of this chapter is to develop a conceptual layout for a new headworks facility and estimate the overall capital cost using the conceptual layout. Alternatives for bar screens, screening conveyors and vortex grit basins are also evaluated. Final decisions about a specific layout and specific equipment type should be determined during the preliminary and final design.

5.2 CONCLUSIONS AND RECOMMENDATIONS

- The existing headworks facility is re-rated at a capacity of 37 mgd on an average daily flow basis. An additional separate headworks facility is planned for an average daily flow of 15 mgd.
- Based on the conceptual layout, the total project cost for the new headworks facility is estimated to be \$9.89 million, based on an Engineering News-Record (ENR) value of 8,570 (Los Angeles, August 2006).
- Two mechanical bar screens (one duty and one standby) and one manual bypass bar screen are recommended for the new headworks.
- Climber-type and chain-and-rake-type are two alternatives for the bar screens. They should be further evaluated during preliminary design.
- A shaftless screw conveyor is recommended over a belt conveyor for screenings conveyance.
- A sloped-bottom vortex grit basin is recommended over a flat-bottom grit basin because the accumulation of settled grit can be minimized, and also because the equipment can be bid instead of sole-sourced.
- The headworks will be covered for odor control, and foul air will be continuously withdrawn and treated in a biofilter.

5.3 BACKGROUND

The current headworks facilities at the Regional Water Quality Control Plant (RWQCP) were built in 1999 based on an average daily flow of 50 mgd and a peaking factor of 2.0 (peak flow of 100 mgd). Table 5.1 lists the equipment included in the existing headworks facilities. There is a lack of redundancy, due to no standby grit chamber, and based on performance it appears that the grit chamber capacity is less than the manufacturer's rating of 50 mgd on an average daily flow basis. For this Integrated Master Plan, the grit chambers are re-rated at a more conservative capacity of 37 mgd for average daily flow. An

average daily flow of 52 mgd and a wet weather peaking factor of 2.2 are used for the Integrated Master Plan. Based on the apparent capacity of the existing grit basins, it was decided at the project meeting on September 20, 2006 that the sizing for an additional separate headworks facility would be planned for an average daily flow of 15 mgd and a wet weather peak flow of 33 mgd for the Integrated Master Plan.

Table 5.1 Exi Wa City	sting Head stewater C / of Rivers	dworks Facility Collection and Treatment Facil side	lities l	ntegrated Master Plan
Equipmer	nt	Туре	Qty	Note
Bar Screens		Climber	4	1/2-inch opening.
Raw Screenings C	onveyors	Shaftless Screw	2	
Grit Screenings Co	onveyors	Shaftless Screw	2	
Grinders			2	
Washer/Compacto	ors		2	
Grit Basins		Vortex (Sloped-Bottom Type)	2	20-foot diameter.
Grit Pumps		Centrifugal Recessed Impeller	2	250 gpm each, 45-foot head.
Grit Classifiers (Te	acup)	Hydraulic Vortex	2	250 gpm each, 42-foot diameter.
Grit Dewatering Unit (Snail)			2	18-inch belt width.

5.4 CONCEPTUAL LAYOUT

The conceptual layout for the new headworks with a wet weather peak flow of 33 mgd is shown in Figure 5.1.

The new headworks will have three channels for bar screens. Two mechanical bar screens are shown in two channels with one duty and one standby at peak flow, and one manual bar screen in a bypass channel for redundancy.

A conveyor will be required to convey screenings from the two automatic bar screens to the screenings washer and compactor for screenings disposal.

The screened wastewater will flow to a vortex grit basin. A bypass channel can be used if the grit basin needs to be bypassed. The space for a future grit basin is also included. The grit will be pumped to grit washers before disposal.

The new headworks will be covered for odor control. The bar screens will be enclosed in a building, and the channels and the grit basin will be covered by aluminum plate. The foul air will be continuously withdrawn and treated in a biofilter that is discussed in Volume 4, Chapter 6 - Primary Treatment.

CONCRETE SLAB

COVERED BY ALUMINUM PLATE

WASTEWATER COLLECTION AND TREATMENT FACILITIES INTEGRATED MASTER PLAN

NEW HEADWORKS LAYOUT

FIGURE 5.1

Upstream of the headworks, a metering and flow splitting facility will be provided to split flow between the existing and future headworks.

Based on the conceptual layout, the total project cost for the new headworks facility is estimated to be \$9.89 million, based on an ENR value of 8,570 (Los Angeles, August 2006).

Table 5.2	Total Cost Estimate of New Headworks Facility Wastewater Collection and Treatment Facilities Integrated Master Plan City of Riverside			
	ltem	Percentage	Value	Subtotal
Subtotal Direc	ct Costs			\$3,120,000
Sitework		10%	\$310,000	
Electrical and Instrumentation		15%	\$470,000	\$3,900,000
Contingency		30%	\$1,170,000	\$5,070,000
General Conditions		10%	\$510,000	\$5,580,000
General Contractor Overhead and Profit		15%	\$840,000	\$6,420,000
Sales Tax on	Materials	7.75%	\$200,000	\$6,620,000
Bid Market Allowance		15%	\$990,000	\$7,610,000
Engineering N	lanagement and Legal	30%	\$2,280,000	
	Total Project Cost			\$9,890,000

The total cost estimate for the new headworks facility is summarized in Table 5.2.

5.5 BAR SCREENS

The existing headworks facility has climber-type bar screens. Climber-type bar screens are a well-proven technology with many successful installations. The primary advantage of climber-type bar screens over most other screens is that all moving parts are out of the wastewater. For future expansion, chain-and-rake-type bar screen with multiple rake bars mounted onto chains could be considered as an alternative to the climber-type screens.

One option for a chain-and-rake-type bar screen is Mahr[™], as shown in Figure 5.2. It has a lower profile than the climber-type bar screens, and requires less than 8 feet of headspace. Mahr[™] is offered with a two-speed drive with automatic reverse ability to remove obstructions. Though the lower sprockets of Mahr[™] are submerged in the wastewater, they have self-lubricated bearings and require no greasing.

Another option for a chain-and-rake-type bar screen is the Duperon[®] FlexRake, as shown in Figure 5.3. The chains (FlexLinks[™]) of the Duperon[®] FlexRake bend in only one direction providing both flexibility and rigidity. The design has no lower sprockets. The primary disadvantage of the Duperon[®] FlexRake is the limited number of long-term installations.

FIGURE 5.2

A summary and comparison of climber-type and chain-and-rake-type bar screens are presented in Table 5.3 and Table 5.4. The City of Riverside (City) should re-evaluate both alternatives during preliminary design, when chain and rake type screens have more experience.

Table 5.3	Table 5.3Summary of Climber- and Chain-and-Rake-Type Bar ScreenAdvantages/DisadvantagesWastewater Collection and Treatment Facilities Integrated Master PlanCity of Riverside			
Climber-Type Climber-Type Bar Screen Advantages Bar Screen Disadvantages				
No moving	parts in wastewater flow.	Height of equipment requires taller building.		
 More install 	ation experience.	Long cycle time for a deep channel.		
		Higher maintenance requirement.		
Chain-and-Rake-Type Bar Screen Advantages		Chain-and-Rake-Type Bar Screen Disadvantages		
Reduced he	eight of equipment above deck	 Moving parts in wastewater flow. 		
compared t	ompared to existing climber-type unit.	 Maintenance of bottom sprockets requires 		
Continuous	operation and multiple rakes	channel access (only for Mahr™).		
	e time.	 Limited number of long-term installations. 		
 Lower main 	itenance.			

Table 5.4	Comparison of Bar Screens Wastewater Collection and Tre City of Riverside	eatment Facilities Inte	grated Master Plan
		Chain-and-Rake	Climber
Operating E	xperience	0/—(1)	+
Reliability		+/0 ⁽¹⁾	+
Moving Part	s in Wastewater	-/0 ⁽¹⁾	+
Height of Equipment		+	-
Maintenance Access		-/0 ⁽¹⁾	0
Maintenance	e Requirement	0	0
Equipment C	Cost	0	0
Capital Cost		0	_(2)
O&M Cost		0	_(3)
<u>Notes</u> : (1) Varies b (2) Require (3) More fo	by manufacturer (Mahr™/Duperon [®] s the building to be taller. ul air to treat.	<u>Ratings</u> :). + = Positive compa – = Negative comp 0 = Neutral compa	arative characteristic. arative characteristic. rative characteristic.

5.6 SCREENING CONVEYORS

Shaftless screw conveyors are currently used at the RWQCP. A belt conveyor is compared as an alternative as requested at the project meeting on September 20, 2006. A typical belt conveyor and shaftless screw conveyor are shown in Figure 5.4 and Figure 5.5, respectively.

A summary and comparison of the two conveyor alternatives are presented in Table 5.5 and Table 5.6. Based on the discussion in the October 18, 2006 meeting, a shaftless screw conveyor is preferred for the new headworks.

Т	Table 5.5Summary of Belt and Shaftless Screw Conveyor Advantages/Disadvantages Wastewater Collection and Treatment Facilities Integrated Master Plan City of Riverside			
	Belt Conve	eyor Advantages	Belt Conveyor Disadvantages	
 Can convey large objects. 		large objects.	 Can be messy (significant housekeeping requirements). Not well suited for very wet material (with free water). Spillage/carryover can generate additional odors. Large number of rollers and idlers require frequent maintenance. 	
	Shaft Conveyo	less Screw or Advantages	Shaftless Screw Conveyor Disadvantages	
•	Clean.		May have difficulty conveying large objects.	
•	Suitable for free water).	wet material (with	Conveying abrasive material will reduce the liner life.	
•	Few compo	nents.		

Table 5.6Comparison of Belt Conveyor and Shaftless Screw Conveyor
Wastewater Collection and Treatment Facilities Integrated Master Plan
City of Riverside

	Belt	Shaftless Screw
Cleanliness	_	+
Maximum Incline	0	+
Large Object Conveyance	+	_
Very Wet Material Conveyance	_	+
Number of Components	_	+
Maintenance Requirements	_	+
Odor Control Covers	_	+
<u>Ratings</u> : + = Positive comparative characteristic. - = Negative comparative characteristic. 0 = Neutral comparative characteristic.		

TYPICAL BELT CONVEYOR FOR SCREENINGS

FIGURE 5.4

TYPICAL SHAFTLESS SCREW CONVEYOR FOR SCREENINGS

FIGURE 5.5

A life-cycle cost analysis is performed for the two conveyor alternatives. As shown in Table 5.7, the life-cycle cost of the shaftless screw conveyor is slightly lower than the belt conveyor.

Table 5.7Life Cycle Cost Analys Wastewater Collection City of Riverside		sis of Conveyors and Treatment Facilities Integrated Master Plan		
		Belt	Shaftless Screw	
Capital Cost		\$58,000	\$50,000	
Replacement Frequency		Every 10 years	Every 4 years	
Replacement Cost		\$1,600 ⁽¹⁾	\$3,800 ⁽²⁾	
Monthly Maintenance Cost ⁽³⁾		\$100	\$0	
Semi-Annual Maintenance Cost		\$100	\$100	
Life Cycle Cost ⁽⁵⁾		\$84,000	\$67,700	

Notes:

(1) Belt cost of \$800 plus labor of two people for 1 day at \$50/hour.

(2) Liner cost of \$3,000 plus labor of two people for 1 day at \$50/hour.

(3) Grease bearings: 2-hour labor.

(4) Oil change: 2-hour labor.

(5) As present value, assuming life-cycle period of 19 years, discount rate of 6 percent, and escalation rate of 6 percent for the first 5 years and 4 percent thereafter.

5.7 SCREENINGS WASHER/COMPACTOR

A screenings washer/compactor that achieves washing and dewatering would be used in the new headworks. A typical one that would be evaluated during preliminary design is shown as Figure 5.6.

5.8 GRIT BASINS

It was decided the new headworks would include vortex grit basins at the project meeting on September 20, 2006. Typical sections of sloped-bottom and flat-bottom grit basins are shown in Figures 5.7 and Figure 5.8, respectively. These two alternatives are compared in Table 5.8. Carollo Engineers recommends sloped-bottom vortex basins because they minimize the accumulation of settled grit at the bottom, and also because they are non-proprietary, so they can be competitively bid.

Table 5.8	Comparison of Flat- and Sloped-Bottom V Wastewater Collection and Treatment Fac City of Riverside	ortex Grit Basi ilities Integrate	ins ed Master Plan
	Characteristic	Flat-Bottom	Sloped-Bottom
Proprietary E	Equipment	-	+
O&M Requir	ements (Due to Grit Buildup on Basin Bottom)	-	+
Capital Cost		+	+
Required La	nd Area	+	+
Grit Remova	ıl	0	0
Odor Contro	I Requirements	+	+
Reliability		0	0
Flow Turn D	own	—	0
Hydraulic He	ead Loss	+	+
<u>Ratings</u> : + = Positive - = Negative 0 = Neutral c	comparative characteristic. comparative characteristic. comparative characteristic.		

SHAFTLESS SCREW SCREENINGS COMPACTOR WITH WASHING SYSTEM

FIGURE 5.6

